HOSLIM: Higher-Order Sparse LInear Method for Top-N Recommender Systems

نویسندگان

  • Evangelia Christakopoulou
  • George Karypis
چکیده

Current top-N recommendation methods compute the recommendations by taking into account only relations between pairs of items, thus leading to potential unused information when higher-order relations between the items exist. Past attempts to incorporate the higherorder information were done in the context of neighborhood-based methods. However, in many datasets, they did not lead to significant improvements in the recommendation quality. We developed a top-N recommendation method that revisits the issue of higher-order relations, in the context of the model-based Sparse LInear Method (SLIM). The approach followed (Higher-Order Sparse LInear Method, or HOSLIM) learns two sparse aggregation coefficient matrices S and S′ that capture the item-item and itemset-item similarities, respectively. Matrix S′ allows HOSLIM to capture higher-order relations, whose complexity is determined by the length of the itemset. Following the spirit of SLIM, matrices S and S′ are estimated using an elastic net formulation, which promotes model sparsity. We conducted extensive experiments which show that higher-order interactions exist in real datasets and when incorporated in the HOSLIM framework, the recommendations made are improved. The experimental results show that the greater the presence of higher-order relations, the more substantial the improvement in recommendation quality is, over the best existing methods. In addition, our experiments show that the performance of HOSLIM remains good when we select S′ such that its number of nonzeros is comparable to S, which reduces the time required to compute the recommendations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble-based Top-k Recommender System Considering Incomplete Data

Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...

متن کامل

Effect of Rating Time for Cold Start Problem in Collaborative Filtering

Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

An ontological hybrid recommender system for dealing with cold start problem

Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine  and . We introduce an ontological hybrid RS where the ontology has been employed in its  part while improving the ontology structure by its  part. In this paper, a new hybrid approach is proposed based on the combination of demog...

متن کامل

Top-N Recommendation with Novel Rank Approximation

The importance of accurate recommender systems has been widely recognized by academia and industry. However, the recommendation quality is still rather low. Recently, a linear sparse and low-rank representation of the user-item matrix has been applied to produce Top-N recommendations. This approach uses the nuclear norm as a convex relaxation for the rank function and has achieved better recomm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014